Carbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine

Authors

  • A. Akbarzadeh Water Research Institute, Ministry of Energy, P.O. Box 16765-313, Tehran, Iran The Institute for Energy and Hydro Technology, P.O. Box 14845-131Tehran, Iran
  • M. NodeFarahani Department of Civil Engineering, Azad University South Tehran Branch, P.O. Box 15847-43311, Tehran, Iran
  • M. R. Vesali Naseh Department of Civil Engineering, Arak University, P.O. Box 38156-879, Arak, Iran
Abstract:

Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily CO concentration as a function of 12 input variables. Then, forward selection (FS) technique was applied to reduce the number of input variables. After converting 12 input variables to 7 using the FS, they were fed to SVM models (FS-(-SVM) and FS-(-SVM)). Finally, a comparison among SVM models operation and previously developed techniques, i.e. classical regression model and artificial intelligent methods such as ANN and adaptive neuro-fuzzy inference system (ANFIS) was carried out. Determination of coefficient (R2) and mean absolute error (MAE) for -SVM (-SVM) were 0.87 (0.40) and 0.87 (0.41), respectively, while they were 0.90 (0.39) and 0.91 (0.35) for ANN and ANFIS, respectively. Results of developed SVM models indicated that both FS-(-SVM) and FS-(-SVM) regression techniques were superior. Furthermore, it was founded that the performance of FS-(-SVM) and FS-(-SVM) models were generally a bit better than the best FS-ANFIS and FS-ANN solutions for short term forecasting of CO concentrations.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Bubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine

Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...

full text

siRNA Efficiency Prediction Using Support Vector Machine

RNA Interference (RNAi) is a selective gene silencing mechanism initiated by double stranded RNA (dsRNA). The short RNA species called siRNAs are formed from dsRNA, which can degrade the messenger RNA (mRNA). This knockdown prevents mRNA from producing amino acid sequences which are responsible for gene expression. Thus siRNA alters the regulatory role of mRNA during gene expression by translat...

full text

Software Defect Prediction using Support Vector Machine

developing a defect free software system is very difficult and most of the time there are some unknown bugs or unforeseen deficiencies even in software projects where the principles of the software development methodologies were applied care-fully. Due to some defective software modules, the maintenance phase of software projects could become really painful for the users and costly for the ente...

full text

Using Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes

Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...

full text

High performance of the support vector machine in classifying hyperspectral data using a limited dataset

To prospect mineral deposits at regional scale, recognition and classification of hydrothermal alteration zones using remote sensing data is a popular strategy. Due to the large number of spectral bands, classification of the hyperspectral data may be negatively affected by the Hughes phenomenon. A practical way to handle the Hughes problem is preparing a lot of training samples until the size ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  43- 57

publication date 2020-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023